$ \begin{array}{l} \text{Ni} & -\text{O} \\ \text{Ni} & -\text{N} \\ \text{N} & -\text{C(7)} \\ \text{N} & -\text{C(8)} \\ \text{C(7)-C(6)} \\ \text{C(6)-C(5)} \\ \text{C(5)-C(4)} \\ \text{C(5)-C(4)} \\ \text{C(4)-C(3)} \\ \text{C(3)-C(2)} \\ \text{C(2)-C(1)} \\ \text{C(1)-C(6)} \\ \text{C(1)-O} \\ \end{array} $	1.85 (1) Å 1.92 (1) 1.31 (2) 1.50 (2) 1.43 (2) 1.43 (2) 1.43 (2) 1.38 (2) 1.32 (2) 1.32 (2) 1.40 (2) 1.37 (2) 1.41 (2) 1.34 (2)	$\begin{array}{c} O & \longrightarrow Ni \ -N \\ Ni \ -N \C(7) \\ Ni \ -N \C(8) \\ C(8) \ -N \C(7) \ -C(6) \\ Ni \ -O \C(7) \ -C(6) \\ O \C(1) \ -C(6) \\ O \C(1) \ -C(2) \\ C(7) \ -C(6) \ -C(1) \\ C(7) \ -C(6) \ -C(1) \\ C(7) \ -C(6) \ -C(1) \\ C(7) \ -C(6) \ -C(2) \\ C(1) \ -C(2) \ -C(3) \\ C(2) \ -C(3) \ -C(4) \ -C(5) \\ C(4) \ -C(5) \ -C(6) \end{array}$	$93.4 (4)^{\circ}$ 125.9 (8) 119.1 (8) 114.9 (8) 130.3 (8) 121.4 (9) 118.4 (10) 124.2 (9) 118.9 (10) 120.2 (9) 120.2 (10) 120.4 (10) 120.9 (10) 120.2 (9)
		C(4)-C(5)-C(6) C(5)-C(6)-C(1)	120·2 (9) 116·9 (10)
		C(3) = C(0) = C(1)	110 7 (10)

 Table 2. Bond distances and angles

The crystal structure is essentially identical with that of the copper compound and there are no significant differ-

Acta Cryst. (1967). 22, 944

ences between the molecular dimensions of the two compounds except for the bond distances to the metal ions.

This work was supported by the U.S. Public Health Service under basic research grant GM-10842.

References

- BUSING, W. R. & LEVY, H. A. (1959). A Crystallographic Least Squares Program for the IBM 704. ORNL 59-4-37. Oak Ridge National Laboratory, Tennessee.
- FRASSON, E., PANATTONI, C. & SACCONI, L. (1959). J. Phys. Chem. 63, 1908.
- LINGAFELTER, E. C., SIMMONS, G. L., MOROSIN, B., SCHERIN-GER, C. & FREIBURG, C. (1961). Acta Cryst. 14, 1222.
- STEWART, J. M. (1964). Crystal Structure Calculations System for the IBM 709/7090/7094. Tech. Rept. TR-64-6, Computer Science Center, Univ. of Maryland.

Synthesis and lattice constants of transition metal thioniobates with berthierite structure.* By M. EIBSCHÜTZ, E. HERMON and S. SHTRIKMAN, Department of Electronics, The Weizmann Institute of Science, Rehovoth, Israel

(Received 22 December 1966)

Compounds with chemical formula MNb_2S_4 where M is one of the divalent transition metals Mn, Fe, Co, Ni, Cu were synthesized. The lattice constants of these compounds, isomorphous with berthierite (FeSb₂S₄), were determined from the powder diffraction data, using Cohen's analytical method.

As a part of a research program on ternary sulphides, a new family of compounds has been synthesized. The chemical formula is MNb_2S_4 , where M = Mn, Fe, Co, Ni and Cu. We began with the idea that niobium is chemically analogous to antimony and thus substituted Nb for Sb in the natural mineral FeSb₂S₄. The second step was to substitute other transition metals for the Fe ion, in particular Mn, Co, Ni and Cu.

All the materials were prepared by the ceramic method: molar ratios of the elements were intimately mixed, pressed into pellets, and after sealing under vacuum in silica tubes, fired for 18-20 hours at 1050-1080 °C and cooled. The materials were dark grey in color and were odorless. It is interesting to note that in these sulphides the niobium is trivalent, in contrast to the known niobates (Turnock, 1966) in which it is pentavalent.

The X-ray powder photographs were taken with a Norelco Straumanis camera having a diameter of 114.6 mm and Co radiation filtered through an iron foil. The powder photographs were indexed on the basis of the orthorhombic unit cell, using the crystallographic constants of berthierite (Buerger & Hahn, 1955). The indexed diffraction data are given in Table 1. The systematic absences observed in the patterns are consistent with the space group of berthierite, *i.e. Pnam* (D_{2h}^{15}), (Buerger & Hahn, 1955). Results of density measurements carried out with a pycnometer for FeNb₂S₄, d=4.02 g.cm⁻³, were consistent with the assumption that there are 4 molecules per unit cell, as in FeSb₂S₄. Note that no lines alien to those allowed by the *Pnam* space group

Table 1. Powder diffraction data for MNb₂S₄ (space group Pnam)

	Mn			Fe			Со			Ni			Cu	
do	dc	Io	do	dc	Io	do	dc	Io	do	dc	Io	do	dc	Io
6.25	6.31	s	6.11	6.01	S	5.85	5.74	5	5.77	5.73	S	6.40	6.31	S
						2.950	2.945	m	2.939	2.942	m			
3.156	3.153	m				2.870	2 ·868	m	2.853	2.860	т			
			3.062	3.070	т									
2.872	2.867	т	2.870	2.870	т							2.870	2.862	m
2.803	2.812	т	2.800	2.810	т	2.780	2.763	т	2.765	2.763	m	2.811	2· 810	m
2.592	2.583	ms	2.604	2·613	ms	2.581	2.577	ms	2.567	2.571	ms	2.601	2.580	ms
2.370	2.360	m	2.351	2.345	m	2.318	2.300	т	2.300	2.290	m	2.376	2.350	m
2.133	2.132	vs	2.100	2.097	vs	2.060	2.048	vs	2.050	2.038	vs	2.148	2.130	vs
			2.049	2.052	т									
			1.873	1.880	w	1.829	1.820	w	1.822	1.815	w	1.930	1.930	w
1.899	1.890	w				1.662	1.664	m	1.669	1.663	m			
1.706	1.705	т	1.673	1.681	m	1.630	1.639	т	1.630	1.639	m	1.690	1.700	m
						1.600	1.597	5	1.597	1.595	5			
	6·25 3·156 2·872 2·803 2·592 2·370 2·133 1·899	do dc 6·25 6·31 3·156 3·153 2·872 2·867 2·803 2·812 2·592 2·583 2·370 2·360 2·133 2·132 1·899 1·890	do dc Io 6·25 6·31 s 3·156 3·153 m 2·872 2·867 m 2·803 2·812 m 2·592 2·583 ms 2·370 2·360 m 2·133 2·132 vs	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

^{*} The research reported in this document has been sponsored in part by the Air Force Materials Laboratory Research and Technology Division AFSC through the European Office of Aerospace Research, United States Air Force Contract AF 61(052)-654, and was done in partial fulfilment of the Ph.D. requirements of one of the authors (E.H).

SHORT COMMUNICATIONS

						1	Table 1 (a	cont.)							
		Mn			Fe			Со			Ni			Cu	
h k l	d_o	d_{c}	Io	d_o	d_c	Io	do	d_c	Io	do	d_c	Io	do	dc	Io
181	1.666	1.657	ms				1.495	1.510	w	1.490	1.509	w	1.639	1.646	w
281	1.610	1.601	m				1.464	1.473	w	1.462	1.471	w	1.610	1.600	w
631	1.589	1.593	m	1.605	1.603	w									
641	1.536	1.536	m	1.539	1.535	m									
480				1.495	1.500	w	1.440	1.434	w	1.439	1.433	w			
210 0	1.464	1.461	m										1.480	1.462	m
481	1.445	1.440	<i>vw</i>										1.440	1.439	vw
820	1.409	1.409	w	1.405	1.406	w	1.400	1.390	w	1.397	1.391	w	1.416	1.406	UW
512	1.394	1.394	т										1.372	1.389	m
172				1.361	1.363	m	1.322	1.330	m	1.318	1.327	m			
671													1.325	1.325	m
821	1.316	1.312	S	1.310	1.317	5	1.297	1.299	5	1.297	1.298	s	1.304	1.305	S
608				1.295	1.285	w									
911	1.195	1.195	w				1.177	1.180	vw	1.163	1.156	UW			
572	1.170	1.174	<i>vw</i>	1.181	1.180	vw							1.167	1.170	vw
012 0							1.109	1.109	บพบ	1.106	1.108	<i>vvw</i>			
672				1.117	1.117	<i>vw</i>	1.099	1.096	w	1.095	1.095	w			
10 4 0	1.094	1.097	vw	1.091	1.091	<i>vw</i>	1.073	1.070	vw	1.059	1.069	UW	1.095	1.095	w
961	1.079	1.080	m	1.075	1.075	w	1.052	1.051	w	1.050	1.050	w	1.083	1.081	m
10 5 0	1.072	1.072	w				1.038	1.040	w	1.033	1.039	w	1.064	1.069	w
912	1.034	1.032	m	1.054	1.054	m							1.029	1.028	m
782	1.014	1.014	w				0.990	0.990	w	0.989	0.989	w	1.011	1.012	w
613	0.998	1.000	m	1.046	1.046	w									
563	0.966	0.967	m	0.992	0.996	т	0.992	0.992	m	0.989	0.989	w	0.966	0.965	m
12 0 0	0.955	0.955	m	0.960	0.958	m	0.938	∫ 0·940	m	0.937	∫ 0·940	т	0.954	0.953	m
10 4 2	0.930	0.932	w	0.938	0.940	w	0.938	0.935		0.937	0.933		0.929	0.930	m
234				0.920	0.921	s	0.918	`0∙918	5	0.918	0.918	\$		-	

Table 2. Crystallographic constants of MNb₂S₄

М	(Å)	(Å)	(Å)	X-ray density (g.cm ⁻³)
Mn	11.470 ± 0.003	15.096 ± 0.007	3.536 ± 0.001	4.01
Fe	11.481 ± 0.002	14.071 ± 0.003	3.762 ± 0.001	4.05
Со	11.300 ± 0.004	13.315 ± 0.006	3.822 ± 0.002	4.25
Ni	11.299 ± 0.004	13.305 ± 0.004	3.805 ± 0.001	4.35
Cu	11.438 ± 0.005	15.121 ± 0.007	3.524 ± 0.001	4.12

were observed, indicating that the studied materials were single phase.

Magnetic measurements on all of these compounds, as well as Mössbauer effect studies of 57 Fe in FeNb₂S₄ (Eibschütz, Hermon & Shtrikman, 1966), are also consistent with the existence of one single phase in the compounds reported here.

Lattice constants were calculated by Cohen's (1935) analytical least-squares method (Eibschütz, 1965), and are given in Table 2.

We would like to thank Mr Y.Bars for technical assistance.

References

BUERGER, M. Y. & HAHN, T. (1955). Amer. Min. 40, 226. COHEN, M.V. (1935). Rev. Sci. Instrum. 6, 68.

EIBSCHÜTZ, M. (1965). Acta Cryst. 19, 337.

EIBSCHÜTZ, M., HERMON, E. & SHTRIKMAN, S. (1966). To be published.

TURNOCK, A. C. (1966). J. Amer. Ceram. Soc. 49, 177.

Acta Cryst. (1967). 22, 945

A method of allowing for thermal anisotropy in evaluating Wilson plots and normalized structure factors.

By E. N. MASLEN, Department of Physics, University of Western Australia, Nedlands, Western Australia

(Received 29 December 1966)

A method has been developed for allowing for thermal anisotropy in calculating Wilson plots and evaluating normalized structure factors. The data are first brought to an approximately correct scale by the normal Wilson plot process, and a second series of plots is then made against six products of the Miller indices. The limitations of the method are discussed.

The reliability of direct methods of phase determination (Karle & Karle, 1966) depends to some extent on the accuracy of the calculation of the normalized structure factors, or E values, from the magnitudes of the observed structure factors F. The scaling is normally carried out by

a Wilson plot procedure (Wilson, 1942) in which the loga-

rithm of the reciprocal of the mean value of $|F|^2 / \sum_{j=1}^N f_j^2$, N being the number of atoms in the unit cell and f_j the scat-